11,209 research outputs found

    Electron Impact Excitation Cross Sections for Hydrogen-Like Ions

    Full text link
    We present cross sections for electron-impact-induced transitions n --> n' in hydrogen-like ions C 5+, Ne 9+, Al 12+, and Ar 17+. The cross sections are computed by Coulomb-Born with exchange and normalization (CBE) method for all transitions with n < n' < 7 and by convergent close-coupling (CCC) method for transitions with n 2s and 1s --> 2p are presented as well. The CCC and CBE cross sections agree to better than 10% with each other and with earlier close-coupling results (available for transition 1 --> 2 only). Analytical expression for n --> n' cross sections and semiempirical formulae are discussed.Comment: RevTeX, 5 pages, 13 PostScript figures, submitted to Phys. Rev.

    Change detection in categorical evolving data streams

    Get PDF
    Detecting change in evolving data streams is a central issue for accurate adaptive learning. In real world applications, data streams have categorical features, and changes induced in the data distribution of these categorical features have not been considered extensively so far. Previous work on change detection focused on detecting changes in the accuracy of the learners, but without considering changes in the data distribution. To cope with these issues, we propose a new unsupervised change detection method, called CDCStream (Change Detection in Categorical Data Streams), well suited for categorical data streams. The proposed method is able to detect changes in a batch incremental scenario. It is based on the two following characteristics: (i) a summarization strategy is proposed to compress the actual batch by extracting a descriptive summary and (ii) a new segmentation algorithm is proposed to highlight changes and issue warnings for a data stream. To evaluate our proposal we employ it in a learning task over real world data and we compare its results with state of the art methods. We also report qualitative evaluation in order to show the behavior of CDCStream

    The effect of ionization on the populations of excited levels of C IV and C V in tokamak edge plasmas

    Full text link
    The main populating and depopulating mechanisms of the excited energy levels of ions in plasmas with densities <1023-1024 m-3 are electron collisional excitation from the ion's ground state and radiative decay, respectively, with the majority of the electron population being in the ground state of the ionization stage. Electron collisional ionization is predominately expected to take place from one ground state to that of the next higher ionization stage. However, the question arises as to whether, in some cases, ionization can also affect the excited level populations. This would apply particularly to those cases involving transient events such as impurity influxes in a laboratory plasma. An analysis of the importance of ionization in populating the excited levels of ions in plasmas typical of those found in the edge of tokamaks is undertaken for the C IV and C V ionization stages. The emphasis is on those energy levels giving rise to transitions of most use for diagnostic purposes. Carbon is chosen since it is an important contaminant of JET plasmas; it was the dominant low Z impurity before the installation of the ITER-like wall and is still present in the plasma after its installation. Direct electron collisional ionization both from and to excited levels is considered. Distorted-wave Flexible Atomic Code calculations are performed to generate the required ionization cross sections, due to a lack of atomic data in the literature.Comment: 29 pages, 5 figures. This is an author-created, un-copyedited version of an article accepted for publication in Journal of Physics B. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from i

    Experimental Signatures of Anomaly Induced DCC Formation

    Full text link
    We discuss characteristic experimental signatures related to the formation of domains of disoriented chiral condensate (DCC) triggered by the axial anomaly in relativistic heavy ion collisions. We predict that the enhancement of the fraction of neutral pions compared to all pions depends on the angle of emission with respect to the scattering plane and is concentrated at small transverse momentum and small rapidity in the center-of-mass frame. The anisotropy with respect to the reaction plane is also observable in the inclusive photon distribution.Comment: 11 pages, 4 figures, REVTEX, discussion on photon distribution added, one figure adde

    In silico modeling and evaluation of Gordonia alkanivorans for biodesulfurization

    Get PDF
    10.1039/c3mb70132hMolecular BioSystems92530--254

    From Physical to Cyber: Escalating Protection for Personalized Auto Insurance

    Full text link
    Nowadays, auto insurance companies set personalized insurance rate based on data gathered directly from their customers' cars. In this paper, we show such a personalized insurance mechanism -- wildly adopted by many auto insurance companies -- is vulnerable to exploit. In particular, we demonstrate that an adversary can leverage off-the-shelf hardware to manipulate the data to the device that collects drivers' habits for insurance rate customization and obtain a fraudulent insurance discount. In response to this type of attack, we also propose a defense mechanism that escalates the protection for insurers' data collection. The main idea of this mechanism is to augment the insurer's data collection device with the ability to gather unforgeable data acquired from the physical world, and then leverage these data to identify manipulated data points. Our defense mechanism leveraged a statistical model built on unmanipulated data and is robust to manipulation methods that are not foreseen previously. We have implemented this defense mechanism as a proof-of-concept prototype and tested its effectiveness in the real world. Our evaluation shows that our defense mechanism exhibits a false positive rate of 0.032 and a false negative rate of 0.013.Comment: Appeared in Sensys 201

    The STAR Photon Multiplicity Detector

    Full text link
    Details concerning the design, fabrication and performance of STAR Photon Multiplicity Detector (PMD) are presented. The PMD will cover the forward region, within the pseudorapidity range 2.3--3.5, behind the forward time projection chamber. It will measure the spatial distribution of photons in order to study collective flow, fluctuation and chiral symmetry restoration.Comment: 15 pages, including 11 figures; to appear in a special NIM volume dedicated to the accelerator and detectors at RHI

    Maximizing Maximal Angles for Plane Straight-Line Graphs

    Get PDF
    Let G=(S,E)G=(S, E) be a plane straight-line graph on a finite point set SR2S\subset\R^2 in general position. The incident angles of a vertex pSp \in S of GG are the angles between any two edges of GG that appear consecutively in the circular order of the edges incident to pp. A plane straight-line graph is called ϕ\phi-open if each vertex has an incident angle of size at least ϕ\phi. In this paper we study the following type of question: What is the maximum angle ϕ\phi such that for any finite set SR2S\subset\R^2 of points in general position we can find a graph from a certain class of graphs on SS that is ϕ\phi-open? In particular, we consider the classes of triangulations, spanning trees, and paths on SS and give tight bounds in most cases.Comment: 15 pages, 14 figures. Apart of minor corrections, some proofs that were omitted in the previous version are now include
    corecore